Early detection biomarkers in ovarian cancer

Laura Feeney (Clinical Research Fellow, Medical Oncology SpR)

Supervisor: Dr Paul Mullan (CCRCB)

Overview

Ovarian cancer overview

• Liquid biopsy: What is it? How can we use it?

Epigenetics + DNA methylation

Brief overview of my research project

Ovarian cancer

 High-grade serous carcinoma (HGSC) is the most common + most aggressive

 >75% of women with ovarian cancer (OC) are diagnosed when the tumour has already spread¹

 The ability to detect and diagnosis OC earlier would dramatically improve cure rates

 Currently no effective method of screening²

5 year stage specific relative survival rates, adults (ages 15-99), Anglia Cancer Network, 1987-2008

Where does ovarian cancer begin?

 Overwhelming evidence that the most common type of ovarian cancer does not begin in the ovary¹

- There are areas that we can identify that indicate that a cancer is starting to develop
 - Serous tubal intraepithelial carcinoma (STIC)²

What is a liquid biopsy?

- Circulating tumour DNA (ctDNA) was first recognised more than 60 years ago
- Fragments of DNA released by healthy and cancer cells and finds its way into the blood flow
- Cancer DNA has different characteristics to healthy DNA
- Detecting the presence of ctDNA in presymptomatic individuals has the potential to become a useful screening test

Tissue biopsy vs Liquid biopsy

 Analysis of ctDNA in the blood forms the cornerstone of a 'liquid biopsy'

 Liquid biopsies offer a number of advantages over standard/tissue biopsies

Time-Intensive Procedure Localized Sampling of Tissue Not Easily Obtained Some Pain/Risk Invasive

Liquid Biopsy

Quick Comprehensive Tissue Profile Easily Obtained Minimal Pain/Risk Minimally Invasive

What is Epigenetics + DNA methylation?

 Epigenetics is essentially extra information layered on top of the sequence of letters that make up our DNA

• DNA can be tagged with a tiny molecule (methyl) that stick to some of its letters

Can switch off genes

Crucial role in early cancer development

Research objectives

- To identify DNA methylation changes that will detect early stage OC
- To develop a blood test that can be used to screen for early stage OC

plasma

Discovery method

- In a previous study we identified **20 DNA markers** to investigate
- **Discovery:** 9 of the most promising DNA markers were analysed using tissue samples from a small study group
- Validation: 4 of these markers were analysed using tissue samples from a larger study group

DNA marker analysis

4 DNA markers were higher in STIC + HGSC samples compared to NFT

DNA markers elevated in early stage OC

Highlights potential for use in early detection

Summary

- Need for earlier detection for OC to improve patient survival
- We have identified 4 DNA methylation markers that can be used to detect early stage OC in tissue samples
- We are now working on developing this into a blood test
- Rapidly evolving field and advances in technology are making this a realistic possibility

Acknowledgements

MSG group

Dr Paul Mullan
Dr James Beirne
Dr Sharon Eddie
Dr Anna McCormick
Dr Alex McIntyre
Dr Jennifer Ferris
Shannon Beattie

Alice Ormrod

Charlotte McBrien

BHSCT

Professor Glen McCluggage Dr Ian Harley Dr Elaine Craig

Buckley group

Dr Niamh Buckley Paula Coulter Ahmed Elkashif

NI Biobank

Dr Claire Lewis
Paul Murray
Tracey McGuigan

PMC group

Professor David Gonzalez de Castro Lauren McConnell

University of Liverpool

Dr Lakis Liloglou

University of Leicester

Professor Jacqui Shaw Dr Mark Openshaw

All patients whose contribution has made this and many other studies possible

